
PubHubs Identity Management

Bart Jacobs, Bram Westerbaan,

Omar Javed, Harm van Stekelenburg,

Lian Vervoort, Jan den Besten

iHub, Radboud University, Nijmegen, The Netherlands

May 31, 2023

Abstract

PubHubs is a new open source community platform that combines
local group conversations, via its own adaptation of Matrix, with pro-
portional authentication of users. PubHubs forms a (cryptographically)
closed network of associated, independent ‘hubs’ that run dedicated Ma-
trix homeservers, under a common umbrella. Attribute-based authenti-
cation exists in PubHubs at two levels, namely: centrally, for login to
PubHubs itself, and thereby to each of the hubs, and decentrally, for log-
ging into specific rooms in hubs.

Apart from this attribute-based authentication, PubHubs generates
for each user different (persistent) pseudonyms for different hubs. In this
way the activities across different hubs cannot be connected, not even via
the central login. The overal aim of the PubHubs (identity) architecture is
to provide a suitable combination of privacy protection and accountability.

This article explains how identity management works for PubHubs, via
attributes and pseudonyms. It describes not only what users and adminis-
trators can do, but also what the underlying protocols and cryptographic
mechanisms are. The approach is quite generic and can be used in other
distributed settings as well, where users are known centrally, but not in
nodes where they are identified via persistent pseudonyms.

1 Introduction

There is widespread discomfort about the influence of the current big, global
social networks, like Facebook and TikTok. They have commercial goals and
employ various techniques to keep users on their platform — via algorithmic
engagement maximisation, leading to extremism and fake news — and to pro-
file users so that they can be manipulated for commercial or (geo)political aims,
see e.g. [6]. Many people have become dependent on such networks for their

1

social interaction and for news and entertainment, but the networks offer little
certainty (about other users) or reliability (e.g. about authenticity of content).
Although these networks thus perform a role as utility, their regulation is still
in its infancy. In Europe such regulation is just starting, notably via the Digital
Services Act. This leaves room for alternative platforms that put public values
at the center stage. PubHubs1, short for Public Hubs, is one such alternative
that started in 2022 in The Netherlands. Most of the design & development of
PubHubs happens within an academic setting, but connections and collabora-
tions with other (non-profit) parties are being set-up. The PubHubs initiative
has quickly attracted attention, at least in the Netherlands. A broadly adopted
motion in national parliament urged the government to support the initiative
and communicate with citizens via PubHubs, in the future.

PubHubs uses groups of users (communities) as its main units, and not
individuals with personal profiles. It therefore likes to see itself as a ‘community’
platform instead of a ‘social’ network — the term that is commonly used today.
The underlying idea is that people usually communicate in small groups, at
work, among friends, within the neighbourhood, within a school etc. Thus,
participants in PubHubs cannot talk (or shout) to the whole world, and vice-
versa, are not exposed to the whole world — with all associated risks. The idea
behind PubHubs is that people are more likely to behave a bit more civilised
in smaller (online) communities. In addition, smaller communities are easier to
moderate.

PubHubs is organised as a network of independent hubs, with a shared single-
sign-on. Conversations take place in local hubs (and not globally) and the as-
sociated (conversation) data is managed decentrally, within each hub. Each
participant has per hub a separate, persistent pseudonym, so that conversations
in different hubs take place in separate (name) spaces. Hubs, or actually rooms2

within hubs, may ask (optionally) for additional personal information, in the
form of ‘attributes’, such as a postal code for a neighbourhood community. The
identity infrastructure aims to strike a balance between privacy protection and
accountability. Even if people are known locally, in a hub, via local pseudo-
nyms, they can still be held accountable if they behave against the rules of the
hub. Ultimately, they can be banned from the hub — by blocking their local
pseudonym — but less severe sanctions are also possible (like delayed posting,
or temporary bans).

PubHubs builds on the Matrix protocol, an open standard for instant mes-
saging, and uses a version of the open source Synapse matrix homeserver3. These
homeservers are modified via custom modules, to form ‘hubs’ within PubHubs.
The homeservers each serve their own client to the user, see Figure 2. Cru-
cially, PubHubs does not use the federation offered by the Matrix protocol but
adds its own identity infrastructure. This identity layer is incompatible with the
Matrix federation and does not accept such commonly used Matrix-logins. Pub-
Hubs requires a more elaborate identity infrastructure than offered by existing

1See pubhubs.net and the PubHubs position paper for more information.
2A room, in Matrix terminology, corresponds to a channel in Slack.
3Synapse is the name of the most common and popular Matrix homeserver.

2

https://pubhubs.net/en/
https://pubhubs.net/papers/Pubhubs-position-paper.pdf

social platforms, that are in essence username-password based and rely on self-
declaration when it comes to personal information. They may verify an email
address or phone number of ordinary users, and perform a more serious identity
check for famous people, for people who choose to pay for such checks, or for
those who are suspected of identity fraud. Within hubs, personal attributes
are not used for (vertical) top-down control, but for giving participants in a
conversation reliable relevant information and appropriate levels of (horizontal)
certainty about the identities of other participants. In addition, such attributes
may be used in attribute-based signatures [1], to ensure authenticity of certain
posts (e.g. from a medical doctor) in conversations.

Given that hubs run their own homeserver, it is clear that handling of con-
versation data happens locally, within these hubs. These data are thus invisible
to other hubs, or to what we call PubHubs Central: the organisation running
the central login. A point of continuous care in the design and implementation
of PubHubs is to make sure that local data remain local, while at the same time
users have an overview over what happens locally. For instance, once logged
in, users will be given an overview of their favourite hubs and of the unread
messages that sit waiting for them there. We realise this separation via our own
(Matrix) client that uses iframes to separate information from different parties,
see Figure 2.

In addition, PubHubs Central operates together with a separate centrally
hosted entity, called the Transcriptor. The set-up is such that PubHubs Central
knows the identity of PubHubs users, but not where they go (that is, to which
hubs), while the Transcriptor knows where people go, but not who they are.
Details appear in Section 3.

The topic of this paper is not PubHubs itself, as a new emerging community
platform, but its identity infrastructure. This infrastructure is generic and of
wider interest, since it may be used for other distributed platforms as well.
However, here we will describe it in the context of PubHubs. The essential
parts of this infrastructure have been implemented and are now being tested
and refined in small pilots, see Section 6 for details.

This paper describes the main ideas behind this identity layer and its design,
including some of the cryptographic details, especially for pseudonyms (building
on [11]). Personal attributes are handled via the open source privacy-friendly
authentication app Yivi4. Within Yivi users can collect personal data about
themselves, from trusted sources, in the form of attributes, such as name, ad-
dress, phone number, email addres, date of birth, citizen number etc. These
attributes can be disclosed selectively, via zero-knowledge proofs. The details of
how Yivi works are beyond the scope of the paper. Yivi may be seen as a pre-
cursor identity wallet, as currently under development in the European Union.
Later on, PubHubs may use such wallets too. In the descriptions below, Yivi is
simply used as an existing, independently operated component in the PubHubs
infrastructure.

4see yivi.app; the Yivi app, formerly known as IRMA, see [2], has been renamed for legal
reasons.

3

https://www.yivi.app/en

The identity layer of PubHubs serves two main purposes.

1. It gives participants in group conversations an appropriate level of cer-
tainty about other participants in a conversation. For instance, in patient
self-help groups, typically centered around a particular disease, the pa-
tients themselves often like to remain unknown (pseudonymous), but they
do wish to recognise healthcare professionals as such, specifically their
medical expertise and/or medical registration number.

2. It gives the hub administrators and moderators effective means for moder-
ation — a key element of PubHubs — and for conflict resolution. Even if
participants are known only via (persistent) local Hub-pseudonyms, they
can be addressed and even sanctioned, if needed, via these pseudonyms.

One may think of this set-up as “securitised openness”: the PubHubs platform
is open for everyone to join and to remain unknown (pseudonymous), up to a
point, where personal details become relevant — like a postal code, in order to
participate in a neighbourhood discussion room. There is a security infrastruc-
ture in place that can be activated (by hub administrators and moderators) for
providing horizontal certainty in rooms and for holding users accountable. How
moderation is organised in PubHubs is still very much under development. It
is briefly discussed in Section 5, in relation to banning, but moderation itself is
out of scope.

The paper starts with an overview of the identity infrastructure of PubHubs.
Subsequently, Section 3 discusses how ‘polymorphic’ pseudonyms are managed,
not by users, but by ‘the system’ (and also by its administrators). Section 4
explains the role of attribute-based authentication in PubHubs, both for central
login and for ‘secure’ rooms in hubs. Section 5 describes how the identity infras-
tructure can be used to support moderation and ultimately banning. Finally,
Section 6 and 7 describe the current status of PubHubs and draw conclusions.

2 An architecture overview of PubHub’s

This section introduces the essential aspects of the identity infrastructure of
PubHubs, starting from the picture below. Subsequently, the PubHubs client
and the architecture will be discussed. Later sections will provide the relevant
details.

After the central login, all participating hubs are accessible for users, without
further authentication, see Figure 1. Automatically, “under the hood”, users get
their own (local, persistent) pseudonym when they choose to enter a hub, see
Subsection 3.3 for details. Within hubs additional authentication requirements
may exist for ‘secure’ rooms, as indicated by the locks in the picture. When users
choose to enter such a room, they are asked to disclose the required information
about themselves (in the form of attributes), see Subsection 4.2 for details.

The entity for central login, see Figure 1, will be called PubHubs Central,
often abbreviated as PHC . It consists of a combination of services that will be
organised by the legal entity that runs PubHubs.

4

Central
Login

Hub A

Hub B

Hub C

Hub D

Hub E

Hub F

Room Secured room

Room Secured room

Room Secured room

Room Secured room

Room Secured room

Room Secured room

Figure 1: Schematic description of PubHubs, with its central login, providing
access to separately operated hubs, each offering (secure and non-secure) rooms
where the actual conversations take place.

The end-user interacts with PubHubs via a web-based PubHubs client. This
is a custom Matrix client that supports the identity infrastructure that PubHubs
adds to Matrix. The PubHubs client consists of several layered components, see
Figure 2. The overal goal is to guarantee that the central level does not learn
who does what in which hub. Also, activities in different hubs are separated.

1. The PubHubs client forms a container for multiple separate hub clients,
through which the user interact with a hub (reading and sending messages,
joining rooms). These hub clients are served in an iframe from a domain
controlled by the hub, for example, a domain https://hub-a.com of a hub
called ‘a’. This domain separation not only allows hubs the freedom to
customise their own hub clients, but also prevents hubs from (accidentally)
accessing user information from other hubs, or from the central level.

2. The Hub clients are in an iframe within the global client which is served
from the domain of PubHubs Central (PHC). Its primary purpose is
to allow the user to quickly switch between hubs, via a sidebar of icons
showing the different accessible hubs. This hub icons are listed on the top
left in Figure 2.

3. The hub icons in the global client’s sidebar are served by hubs themselves,
in iframes too, in order to separate data flows for privacy protection. In
this way the hubs do not leak, for instance, the number of unread messages
(in hubs) to the global client. This list of relevant hub-icons must be

5

3

3 7

PHC Server Synapse Synapse Synapse Synapse

B
ro

w
se

r-
si

de
Se

rv
er

-s
id

e

Global
client

Hub
client

API Matrix Matrix Matrix Matrix

PubHubs Central Hub A Hub B Hub C Hub D

Icon Icon Icon
Icon

7

Figure 2: A schematic overview of the PubHubs client. The user’s view is on
top, with a sidebar of hub icons. The hub in which the user is currently active is
in gray. The outer dotted part is served by PubHubs Central (PHC). The inner
parts stem from separate hubs, here called A, B, C, D. The user can seamlessly
switch to other hubs via icon-clicks. At the bottom the communication of the
different parts of the PubHubs client with their servers is represented. The
numbers 3 and 7 indicate the totals of unread messages in (rooms within) a
hub. This is local information that is processed within the PubHubs client in
separate silos.

6

synchronized across multiple devices of the same user. Hence it is stored
at PubHubs Central, but encrypted, with a key stored in the global client,
see Remark 4.1 on page 17 for more details.

Yivi Server PHC Server Transcriptor

Global Client

Hub Client

Yivi Server

Hub Server . . .

1 N

Hub Client

Yivi Server

Hub Server

PubHubs
 Client

GBL

Figure 3: The main components of PubHubs. The Yivi server is an Authen-
tication Server that communicates with the PHC server for central login. The
bottom Yivi servers communicating with hub servers are used for authentica-
tion for secure rooms (if any) within hubs. The Transcriptor is explained in
Section 3 and the Global Ban List (GBL) in Section 5.

Figure 3 puts the client of Figure 2 in a wider perspective. At the top level
we see the central components of PubHubs: a Yivi server for attribute-based
authentication, a PubHubs Central (PHC) server, a Transcriptor (TS), and a
Global Ban List (GBL). The Yivi server and GBL play auxiliary roles; the real
work is done by PHC and TS. These two components must be run separately,
by different organisations. Roughly, the idea is that PHC knows the identities
of PubHubs users, but it does not learn to which hubs these users go. The
Transcriptor does know about the hubs that are visited by ‘entities’, but it
does not know the identities of these entities, not even their pseudonyms. This
requires some careful separation of tasks and of cryptographic secrets, as will
be explained in the next section.

3 Polymorphic pseudonyms in hubs

The Elgamal cipher [7] provides the cryptographic basis for the pseudonym man-
agement in PubHubs, following [11]. It uses Elgamal Encryption EG with asso-
ciated operations RK, RR and RS for respectively re-keying, re-randomisation

7

and re-shuffling. This approach is called PEP, for Polymorphic Encryption and
Psuedonymisation. It exploits the malleability of Elgamal encryption. Its es-
sentials are described below. PEP is actively being used in the management
of large collections of medical data for research purposes [10, 8]; it also fea-
tures in a design for privacy-friendly analysis of network traffic [12]. The Dutch
government also uses PEP for pseudonymous identity management5.

Pseudonyms in PubHubs are sequences of 32 bytes. They are too large to be
managed by humans, but they do play a (partly) visible role and can be replaced
by a user-chosen nickname, see Remark 3.1 on page 14. Mathematically, the
PubHubs pseudonyms encode points on an elliptic curve, written abstractly as
E, with addition +. The particular curve E that is used is the ‘ristretto’ variant6

of curve25519 [3] used also by e.g. Signal [5]. It has the cryptographically
desirable property of being a cyclic group of prime order ℓ, a very large number.
This means that for every pair of non-zero points P,Q ∈ E there is a number
n ∈ Z/ℓZ, that is n ∈ Z modulo ℓ, such that Q = n · P = P + · · · + P (n
times); moreover, the map P 7→ n · P : E → E is a group isomorphism, for any
non-zero n ∈ Z/ℓZ. In other words, all non-zero points of E look the same. The
numbers n ∈ Z/ℓZ are called scalars. A special base point B ∈ E is fixed. The
scalar multiples n ·B, for n ∈ Z/ℓZ, then generate all points of E.

The cryptographic use of E derives from the observation that while basic
group operations, such as addition P +Q for P,Q ∈ E and scalar multiplication
n · P for n ∈ Z/nZ and P ∈ E, are easy to compute, nothing much more
is. For example, while we know that for all non-zero points P,Q there is a
unique n ∈ Z/ℓZ with Q = n · P (called the base-P discrete log of Q) no
currently7 viable method to compute such n is known. Finding such n is called
the discrete log problem. The Diffie–Hellman problem, finding n ·m · P given
n · P and m · P , is another task considered intractable.

For encryption, a master private key x ∈ Z/ℓZ is used. This x is actually
a product x = xPHC · xTS of two scalars. For security reasons, in PubHubs it
is divided over two separate parties: one part of x is held by PubHubs Central
(namely xPHC) and one part by the Transcriptor (namely xTS). Both these
parties keep their parts of the master private key x secret and in particular,
they do not share there parts between them. Both shares xPHC and xTS are
used separately below, in the protocol (4), to derive a private key xH for a
participating hub H, in such a way that only H knows xH .

The master public key is the point Y , defined as Y := x ·B ∈ E, where B is
the fixed base point of curve25519. This point Y is known to everyone involved
in PubHubs. The public key for hub H is the point YH := xH ·B.

The Elgamal encryption scheme will be described by a function written as
EG. It takes three arguments, namely a random scalar r, a message M ∈ E to
be encrypted, and a public key, say Z ∈ E. The function EG produces a 3-tuple,
of the form:

EG(r,M,Z) := ⟨ r ·B, r · Z +M, Z ⟩. (1)

5See their BSNk PP service; page in Dutch.
6see ristretto.group and [9].
7An algorithm exists for a quantum computer, but such a machine has yet to materialise.

8

https://www.logius.nl/domeinen/toegang/bsnk-pp
https://ristretto.group

The first input r is a arbitrarily chosen scalar that is used to make the encryption
random, so that multiple encryptions of the same message look different8. The
second input M ∈ E of EG is the message that is being encrypted. The third
input Z ∈ E is a public key. This public key Z is repeated as third component
of the ciphertext output for notational purposes and is in practice often omitted.

If a number z is the private key associated with the above public key Z (so
that Z = z · B) then the owner of z can decrypt a ciphertext c = ⟨c1, c2, c3⟩
produced via (1), in the following way.

EG−1
(
⟨c1, c2, c3⟩, z

)
:= c2 − z · c1. (2)

The crucial property, EG−1
(
EG(r,M, z ·B), z

)
= M , is not hard to prove.

3.1 Deriving private keys for hubs

As mentioned, PubHubs is a network of collaborating hubs under a common
umbrella, providing single-sign-on including management of ‘local’ keys and
pseudonyms, see Figure 1. When we say ‘local’ we mean ‘in a hub’, opposed to
‘at the central level’. (Later in Section 5, we will also use local pseudonyms for
the ban list.)

Hubs are run by separate partner organisations, such as schools, libraries,
municipalities, patient federations, etc., typically with a public task/role. The
PubHubs software is open source, but its network is cryptographically closed, in
the sense that only accepted organisations that have obtained a suitable private
key can participate. The organisational and legal aspects of this acceptance are
beyond the scope of this paper, but in broad terms it involves a hub’s support
of PubHubs’ goals and values and a hub’s commitment to properly run and
moderate the conversations within their own hub. This is layed down in a
contract, between PubHubs Central (PHC) and a (new) hub.

Once such a contract is signed, the new hub H installs the PubHubs software
— an adapted version of the Matrix homeserver Synapse on its own machine9 —
and submits its own domain to PHC . Subsequently, it receives its own private
key, of the form fH · x, where fH ∈ Z/ℓZ is called a factor, or more specifically,
an ‘encryption’ factor. Another ‘pseudonymisation’ factor gH ∈ Z/ℓZ will be
used for the hub, see Subsection 3.3 below. Only the Transcriptor knows these
factors fH and gH .

In our implementation these scalar factors fH and gH for hub H are not
stored by the Transcriptor — e.g. in a large table — but they are generated
each time that they are needed, via an HMAC from the hub identifier H and a
secret key.

8One has to be careful: reusing both the random r and the public key Z is problematic
since subtraction of ciphertexts EG(r,M1, Z)−EG(r,M2, Z) = (0,M1−M2, 0) leaks information
(M1 −M2) about the messages.

9We foresee that hosting hubs will be offered as a commercial service; this does not alter
the story, since from a legal perspective the organisation that signs the PubHubs contract as
hub remains responsible, via a processing agreement with the hoster (under the GDPR).

9

The key distribution protocol is described in Figure 4, in the form of a
message sequence chart (msc). As usual, we assume that protocol messages are
authenticated and encrypted — in practice through TLS and the use of JWTs
— and that protocol implementation details are omitted. PubHubs Central
(PHC) and the Transcriptor (TS) have their own, respective shares xPHC and
xTS of the master private key x = xPHC · xTS . The main reason to split x is
to cryptographically enforce the separation of the domains of concern of the
transcriptor and PHC. Not only does PHC not record to which hub the users
goes, PHC does not even know. Not only does the transcriptor not keep records
of the entities making requests to it, it cannot tell who they are. We write K
for a secret scalar10 that is shared (exclusively) between PHC and TS.

xPHC , K
PHC H

xT , fH , K
TS

key request

K · xPHC key request

K−1 · fH · xTS

multiply

msc “Private key distribution to hub H”

Figure 4: Protocol for distributing a private key xH = fH · x to Hub H via
multiplication of the (content of the) two messages sent to H, namely:(
K · xPHC

)
·
(
K−1 · fH · xTS

)
= fH · xPHC · xTS = fH · x = xH .

The protocol in Figure 4 achieves that (the new) hub H receives a private
key xH = fH ·x, with corresponding public key YH = xH ·B. The hub’s private
key xH is known neither to PubHubs Central nor to the Transcriptor. The
Transcriptor does know the factor fH . This is crucial. With this factor TS can
blindly ‘rekey’ messages encrypted with the master public key Y = x ·B so that
they become encrypted with the hub’s public key YH = fH · Y . This works via
a ‘rekey’ function RK acting as follows on a ciphertext c = ⟨c1, c2, c3⟩.

RK
(
⟨c1, c2, c3⟩, f

)
:= ⟨ 1

f · c1, c2, f · c3 ⟩. (3)

If Z = z · B, so that z is the private key associated with Z, then f · z is the
private key for the new public key f · Z. The scalar 1

f is the multiplicative

10This K depends on the hub H too, but this dependence is omitted for simplicity.

10

inverse11 in Z/ℓZ, so that f · 1
f = 1. We now have:

RK
(
EG(r,M,Z), f

)
(1)
= RK

(
⟨ r ·B, r · Z +M, Z ⟩, f

)
(3)
= ⟨ 1

f · r ·B, r · Z +M, f · Z ⟩
(1)
= EG

(
r
f , M, f · Z

)
.

This new chiphertext can be decrypted with private key f · z.

3.2 Polymorphic pseudonym, upon registration

When a new user U registers at PubHubs Center (PHC) — see Subsection 4.1
for details — a (random) user identity IDU is generated and stored in a (new)
user record. This IDU is a point on the curve E. In each participating hub
the user will have a pseudonym that is derived from IDU , namely IDH,U :=
gH · IDU , where gH is a hub-specific ‘pseudonymisation’ factor known only to
the Transcriptor (TS).

As part of the registration process, PubHubs Central (PHC) forms what is
called the polymorphic pseudonym PPU of user U . It is an (Elgamal) encryption
of the user identity IDU with the master public key. Thus:

PPU := EG
(
r, IDU , Y

)
. (4)

No single entity within PubHubs can decrypt this, but jointly, PHC and TS
can.

When user U chooses to visit hub H, PHC sends the polymorpic pseudonym
PPU , via the user, to TS, so that TS can transform PPU into an encryption
(for H) of the ‘local’ pseudonym of U at H. This is done in such a way that
PHC does not learn to which hub user U is going, while TS does not learn who
is visiting the hub. For details, see Figure 5.

If PHC sends the same data as polymorphic pseudonym to TS about U , this
TS may learn patterns. To avoid this, PHC first performs a re-randomisation
via a function called RR. For a fresh random number s, re-randomisation
changes a chiphertext c = ⟨c1, c2, c3⟩ in the following manner.

RR
(
⟨c1, c2, c3⟩, s

)
:= ⟨ s ·B + c1, s · c3 + c2, c3 ⟩. (5)

Notice that the public key part c3 remains the same. The crucial property
of re-randomisation appears when we apply it to an encryption: it yields an
encryption with the same key, but with new a random, obtained via addition:

RR
(
EG(r,M,Z), s

)
(1)
= RR

(
⟨ r ·B, r · Z +M, Z ⟩, s

)
(5)
= ⟨ s ·B + r ·B, s · Z + r · Z + C, Z ⟩

= ⟨ (s+ r) ·B, (s+ r) · Z + C, Z ⟩
(1)
= EG

(
s+ r, M, Z

)
.

11The inverse of f can be obtained as fℓ−2, since f · fℓ−2 = fℓ−1 = 1 by Fermat’s little
theorem.

11

3.3 Hub login and pseudonymisation

We now consider what happens when a user U logs into a hub H. We as-
sume that the user U is already (registered and) logged in to PubHubs at the
central level, and that PubHubs Central (PHC) has computed a polymorphic
pseudonym PPU — as described in Subsection 3.2. Logging into a hub does
not require any further authentication steps of the user. Simply by clicking on
the hub’s icon in the icon list — on the left in the client, at the top in Figure 2
— the user’s (hub) client starts interacting with the server of hub H, whereby
the hub-login protocol is executed, see Figure 5. The goal of the protocol is to
provide the hub H with the local pseudonym of U at H. This local pseudonym
is sent in encrypted form, in a message called PPH,U below.

Each time that user U visits hub H, this local pseundonym PPH,U is pro-
vided (exclusively) to hub H, in encrypted form. Thus, the pseudonym is per-
sistent. It can be used by the hub to connect all activities of user U within
that hub, across different rooms in the hub, and across time. Since different
hubs get different pseudonyms, tracing users across hubs is not possible — at
least not via these pseudonyms. Deliberately, hubs operate as separate islands,
technically with their own name and data space, and operationally with their
own culture and norms, as expressed e.g. via moderation, see Section 5.

This hub-login involves a third operation on Elgamal ciphertexts, in addition
to re-randomisation (5) and re-keying (3), which is called re-shuffling. It uses a
scalar factor g to transform the message. It works on a ciphertext c = ⟨c1, c2, c3⟩
in the following manner.

RS
(
⟨c1, c2, c3⟩, g

)
:= ⟨ g · c1, g · c2, c3 ⟩. (6)

The effect is that an encrypted message M is turned into g ·M , without affecting
the key with which the message is encrypted — and thus without affecting who
can decrypt.

RS
(
EG(r,M,Z), g

)
(1)
= RS

(
⟨ r ·B, r · Z +M, Z ⟩, g

)
(6)
= ⟨ g · r ·B, g ·

(
r · Z +M

)
, Z ⟩

= ⟨ g · r ·B, g · r · Z + g ·M, Z ⟩

= EG
(
g · r, g ·M, Z

)
.

In the current scenario — of user a U logging into hub H — we wish to
ensure the global invariant that PHC knows identities, but not where they go,
and TS does not now identities, but does know the traffic (of unknown entities
going to hubs). More specifically, PHC knows who logs into some (unkown)
hub, at what times; TS knows which hubs get logins, at what times.

The protocol in Figure 5 describes how this works, while abstracting away
from many implementation details. The user first goes to PHC with an (authen-
ticated) request for its encrypted polymorphic pseudonym PPU = EG(r, IDU , Y),
see 4. The ‘user’ here means the user’s hub client, forming part of the PubHubs

12

U ’s global client
PPU

PHC U ’s hub client
fH , gH

TS
xH

H

PP request

PPU

PPU request visit

to H, as PPU

form PPH,U :=
RS(RK(PPU , fH), gH)

PPH,U

PPH,U

decrypt to
gH · IDU

interactions under
local pseudonym gH · IDU

msc “Hub login with local pseudonym”

Figure 5: Protocol for providing hub H with an encrypted version of the local
pseudonym gH · IDU of user U , as start of interactions of U in hub H un-
der this local pseudonym. Recall from Figure 2 that the PubHubs client runs
several separate clients, in iframes, on the user’s side. The global client has
done the central login at PubHubs Central (PHC), and can re-authenticate to
PHC (via a JWT). This happens in the first message, for obtaining an en-
crypted polymorphic pseudonym PPU of the user U , as in (4), in re-randomised
form. The global client passes this PPU on to the hub client for H, via a mes-
sage exchange between iframes, within the PubHubs client of the user. This
hub client then contacts the Transcriptor TS and discloses that it wishes to
visit hub H, using PPU . Subsequently, the Transcriptor produces the message
PPH,U := RS(RK(PPU , fH), gH) via re-keying and re-shuffling, see (7), using its
encryption and pseudonymisation factors fH , gH for hub H. This PPH,U forms
an encryption of the local pseudonym gH · IDU that the hub H can decrypt,
see (8), with its private key xH .

13

client, see Figure 2. Once in possession of PPU , the user proceeds to TS and
only at this stage makes know that it wishes to connect to hub H. Then, TS
forms the encrypted local pseudonym PPH,U via re-keying and re-shuffling, us-
ing the factors fH and gH that it knows (or can generate) for hub H. This
yields:

PPH,U := RS
(
RK

(
PPU , fH

)
, gH

)
. (7)

Notice that in this way TS ‘blindly’ turns a polymorphic pseudonym PPU into
an encrypted local pseudonym, without knowing the identity IDU involved. The
effect of this operation (7) can be made explicit by unravelling all the definitions
involved.

PPH,U
(7)
= RS

(
RK

(
PPU , fH

)
, gH

)
(4)
= RS

(
RK

(
EG

(
r, IDU , Y

)
, fH

)
, gH

)
(3)
= RS

(
EG

(
r
fH

, IDU , fH · Y
)
, gH

)
(6)
= EG

(
gH ·r
fH

, gH · IDU , YH

)
(8)

This result can be decrypted by the hub H, with its own private key xH = fH ·x,
corresponding to public key YH := xH ·B = fH · x ·B = fH · Y .

Remark 3.1. At the end of the protocol in Figure 5 user U can start its in-
teractions at hub H, in the different available rooms. In principle, the user’s
identity is displayed as the 32 byte local pseudonym gH · IDU . This is not very
human-friendly. Therefore, PubHubs offers users the option to choose a local
nickname, in each hub. Automatically, a few characters from the local pseudo-
nym are appended to the nickname, for persistency and recognisability. The
displayed nicknames in PubHubs are thus of the form ‘john123’. It may be
changed to ‘bob123’, but the ‘123’ part remains stable.

4 Attribute-based authentication

PubHubs combines two identity management mechanisms, one based on pseudo-
nyms and one on personal attributes. The previous section described how these
local, hub-specific pseudonyms work. The current section will focus on how
and where attribute-based authentication is used, namely for registration and
central login, and for accessing secure rooms within hubs.

In general, attribute-based authentication is a privacy-friendly mechanism
that allows individuals to reveal very specific information about themselves in
order to get access. An example is the attribute “older than 18” which may
be required to play certain games online, or to order alcoholic drinks. The
European Union has adopted attribute-based authentication in its wallet-ID
plans, launched in June 2021. Yivi (formerly known as IRMA) is a precursor
to this EU-wallet that is already up and running in The Netherlands12.

12With, at the time of writing, more than 100K users, especially in the health care sector.

14

Yivi is a non-profit, open source mobile phone app, with decentralised (in-
app) storage of attributes, and selective disclosure of attributes via zero-knowledge
proofs based on Idemix, see e.g. [4, 2] for details. The essence is that users can
collect in their Yivi app digitally signed attributes from trusted issuers, such
a public or private registers. Technically, several related attributes are issued
simultaneously, in a single credential. For instance, a ‘citizen’ credential that
is issued in The Netherlands contains, among other things, family name, given
names, date of birth, age limits (like: older than 16, or 18), and citizen number.
Subsequently, users can selectively disclose such attributes to ‘verifiers’ that
they trust, like health service providers or webshops. This disclosure happens
via a direct connection between the user’s Yivi app and the verifier, without
any intermediate third parties that form a privacy hotspot. This connection
between the Yivi app and the verifier is established via a scan of a QR-code, see
Figure 6. At the moment, PubHubs uses Yivi, but it might include other EU-
wallets in the future — as long as they are free, open source, privacy-friendly
and secure.

Below we briefly discuss the two places where attribute-based authentication
(via Yivi) is used in PubHubs, namely at the central login and at secure rooms,
see Figure 1.

4.1 Registration of new user

When a new user chooses to join a specific hub, the user is redirected to PubHubs
Central (PHC) where the user needs to register to PubHubs. Upon registration,
PubHubs’ general (privacy) policy should be accepted. It holds for the whole
system and includes general rules about processing of personal data and about
respectful behaviour. In addition, hubs may have their own policies.

This central registration involves the disclosure of identifying personal at-
tributes by the new user, via their Yivi app, see figure 6. These attributes are
stored in the user record that is created, together with the user identity IDU ,
see Subsection 3.2. These attributes are not disclosed to hubs. All they get to
see (via PHC) about users are their hub-specific pseudonyms.

The identifying information of users is required at the central level so that
user have a persistent identity. The goal is to prevent users from easily setting
up a new identity, e.g. after being banned, see Section 5.

In the current set-up of PubHubs, a new user is asked to reveal both an email
address and a mobile phone number. This is a pragmatic choice, to be explained
below. It does not fully preclude that users reregister with a different email and
phone number, but it makes it harder. When needed, additional attributes can
be required upon registration, like a (real) name or date of birth from a citizen
credential in Yivi.

So why disclosure of email and phone? There are several reasons.

• PubHubs takes data minimisation, as required by the GDPR, seriously.

• Asking much personal information scares off potential new users. For that
reason a real name is not required for registration.

15

• Yivi is not really used outside The Netherlands. Such usage in other
countries requires connections to national (public and private) registers,
so that people can collect sufficiently many useful attributes. Email and
phone attributes are different in Yivi, since they are not issued from a
register. They are issued after an ownership check, via a one-time mes-
sage. Anyone on earth can thus install the Yivi app and get an email
credential in their app, simply by replying to a confirmation email mes-
sage. Similarly, individuals can add their mobile phone number to Yivi
via a SMS-confirmation13.

• In addition, in exceptional operational cases, users may be contacted via
email and/or phone14.

RE

Yi
vi

 a
pp Registration

Pubhubs
Information

Login

RE

Accept

Registration
RE

PubHubs Account
Email
Phone

1) Register2) Scan QR code3) Get Card

Figure 6: The central registration screen where personal attributes are disclosed
via a QR-scan with the Yivi app.

Figure 6 gives an impression of how registration proceeds. Assuming that
the new user already has the Yivi app installed and has loaded the relevant
credentials, the QR-code can be scanned. Within the Yivi app the user is
asked to agree to disclosure of an email address and mobile phone number to
PubHubs. If so, the user receives within the same Yivi session a new ‘PubHubs’
credential in the app, including a PubHubs registration number. It can be used
for subsequent logins.

13However, again for pragmatic (cost) reasons, this sending of SMS confirmations is limited
to Europe, by the organisation (SIDN) that operates Yivi.

14PubHubs is not for profit and reaching out to users for advertisement or manipulation is
not foreseen; it is excluded in the goal binding provisions in PubHubs’ privacy policy.

16

Thus, in Yivi terms, PubHubs is not only a verifier, but also an issuer of its
own credentials. This PubHubs credential has a validity of one year. Renewal
requires redisclosure of the earlier-used email address and phone numbers. It
will be possible to change the email address used at registration, while keeping
the registration number stable. At registration a check is performed if the newly
disclosed email address and/or mobile phone number are not already used for
another registration15.

After successful registration, the user is automatically logged in centrally.
This means that the user receives a JWT and can proceed to the hub of in-
terest. The hub then gets a local pseudonym for this user, as described in
Subsection 3.3.

An already registered user can log into PubHubs via essentially the same
flow. The user then discloses the earlier-received PubHubs credential to Pub-
Hubs Central, and can proceed to any of the participating hubs, without any
further user action — except selecting the relevant hub.

Remark 4.1. Upon registration to PubHubs another thing happens, invisible to
the user. Space is reserved at PubHubs Central (PHC) for encrypted storage of
user secrets, via an encryption key that is available only to the user. These user
secrets contain information about the user that PHC should not learn, such as
the history of hubs in which the user is active. This information is displayed to
the user by the global client, see Figure 2.

The encryption key for these secrets is obtained by the user with the help
of the central Yivi authentication server. This happens when a user logs in at
PubHubs Central, with an existing or new device. Details of how this works
precisely are not so relevant for this paper.

4.2 Secure rooms within hubs

When entering a hub, the user is confronted with a ‘hubpage’ that presents
some general information about the hub and about what happens there. The
user can participate in the conversations in the hub by proceeding to a room
in the hub. Some of the rooms can be entered immediately. But some of the
rooms are ‘secured’. This means that users who choose to enter these secure
rooms have to disclose certain attributes. Setting up such a secure room, and
choosing the required attributes, is done by the administrator of the hub. How
this works is out of scope here. There can be two sorts of attributes for entering
a room: check attributes and profile attributes.

Check attributes are typically boolean in nature. This means that the user
either meets the criterion or does not meet the criterion for accessing the se-
cure room. For example, a neighborhood discussion room will require a check
attribute to allow only users residing with a specific postal code. Another, check
attribute can be an age limit, for example older (or younger) than 16. Check
attributes can also come in the form of an allowed list. Certain attributes of

15Some lenience may be appropriate here, because it does happen that e.g. elderly couples
share a mobile phone.

17

the user have to be on this list in order to access the room. For example, an
allowed list can contain the email addresses of the registered library members.
In that case, the user will only gain access to the secure room if the user’s email
address matches one of the addresses on the allowed list. Such checks ensure
that only registered members gain access to the room.

A characteristic property of check attributes is that they are not visible to
(other) participants in the room. This is not needed, since all admitted par-
ticipants share these attributes as access requirements (like a postal code). In
contrast, profile attributes are used to reveal relevant information to (other)
participants in a room. For example, a study room comprising of a teacher and
students can have identifying attributes, such as a (first and/or last) name of
teacher and students, as profile attributes. They are then visible to all partici-
pants in the room.

Secure rooms in PubHubs are implemented via an extension of the function-
ality of the Synapse Matrix server16. Users can navigate to the desired hub
where the user can select a room of interest, possibly secure. Separately, a Yivi
server needs to be set up, enabling a Yivi disclosure flow, via a QR code, to
enter a secure room. To avoid repeated disclosure of attributes each time the
user enters the same secure room, the room keeps track of whether the user has
already disclosed their attributes to the room.

5 Moderation and banning

As described, PubHubs offers an (identity) umbrella for independent hubs that
run their own homeserver and are responsible for their own data management
associated with local conversations. An integral part of this responsibility in-
cludes moderation of these conversations, within their own hub. On the big
social media platforms moderation by humans was set-up after external, so-
cietal pressure and is often outsourced to low-income countries. In contrast,
within PubHubs, moderation is seen as an essential part of, and contribution
to, one’s community, as a respectable civic responsibility [13]. Hubs will have
the freedom to apply their own community norms, within a general normative
setting, layed down in rules about respectful behaviour that apply system-wide,
across all hubs.

It is too soon to say how this moderation will actually work in PubHubs.
Instead, this section will sketch how PubHubs’ identity infrastructure offers
support for moderation, and more generally, for handling conflicts, ultimately
possibly leading to the banning of users that repeatedly break the rules.

To start, there is the choice if a room within a hub, dedicated to a potentially
sensitive topic, should be secure or not. If it is set up as secure, visitors of the
room will have to disclose certain attributes about themselves, like their real
name or contact details, before they can participate. Alternatively, participants
may be asked to digitally sign their posts with a selection of their attributes. In

16https://matrix-org.github.io/synapse/develop/usage/configuration/config_

documentation.html?highlight=modules#modules consulted April 17, 2023.

18

https://matrix-org.github.io/synapse/develop/usage/configuration/config_documentation.html?highlight=modules#modules
https://matrix-org.github.io/synapse/develop/usage/configuration/config_documentation.html?highlight=modules#modules

the latter case, only active participants reveal their identity and commit to their
contributions, whereas passive participants may remain pseudonymous. All this
may have a dampening effect on potential misbehaviour17. But even if partici-
pants in a room are known only via their (persistent, hub-specific) pseudonyms,
moderators could still use a variety of warning and sanction mechanisms, such
as yellow cards, delayed posting for certain pseudonyms, content scanning be-
fore posting, identity disclosure obligation (to the moderator, or to the room)
for any further posts, a temporary ban, or ultimately a total ban from the room.

When an individual is banned from a certain room in a hub, the individual’s
local pseudonym may be put on a special list within the hub. When this indi-
vidual is banned from several rooms, say from five or ten, the hub may decide to
ban this individual from the entire hub, either temporarily or permanently. This
banning from a hub can be done without knowing the identity of the banned
person; the local pseudonym for that hub suffices. The offending user may then
still visit other hubs.

When an individual is banned from a hub, this is registered centrally by
an entity called the Global Ban List (GBL), see Figure 3. The hub sends the
encrypted pseudonym of the banned individual to the transcriptor and asks it
to rekey and reshuffle it to the GBL. The indivual will thus be listed under
the local pseudonym for the GBL. When the same individual is banned from
another hub, a similar translation via the Transcriptor happens, producing the
same local pseudonym in the GBL. As a result, the GBL can detect if certain
individuals are banned from multiple hubs — without knowing their identity.
At some point, say after 10 hub bans, such an individual may be banned from
PubHubs altogether.

There may be several ways to do this. PubHubs Central and the Transcriptor
may cooperate and decrypt PPU in (4) to the user identity IDU , via their own
shares xPHC and xTS of the global private key x = xPHC ·xTS . Alternatively, the
Transcriptor may rekey the encrypted pseudonym to PHC , without reshuffling
the message, so that PHC may decrypt on its own and learn the identity. Such
a global ban happens via blocking any further logins with identity IDU .

When an individual is banned centrally, via the registered combination of
email address and mobile phone number, there is the possibility that the same
individual re-registers with a different email address and phone number. Getting
a different email address is easy, but getting a different mobile phone number
(that is not already in use) is a slightly bigger hurdle. When it becomes clear, in
practice, that this hurdle is too low, then one can always require more identifying
attributes at registration, such one’s real name. As long as re-registrations of
the same (offending) individuals is not a problem, we like to keep the attribute
disclosure requirements at registration as light as possible.

17To what extend disclosure of identity information makes a discussion more civilised is an
open question. The PubHubs platform may provide useful emperical data.

19

5.1 PubHubs and law enforcement

Finally, we briefly look at what law enforcement authorities can do in the context
of PubHubs. Here we assume that there is a disclosure order, based on a due
legal process. We briefly consider multiple scenarios.

• An individual who is active within a hub may become a suspect. In
that case at least the individual’s pseudonym is visible, within that hub.
The authorities may then request the hub administrator to produce all
behavioural data associated with that pseudonym. This could include
attributes that the individual has revealed within the hub, at some earlier
stage. Possibly, this enables de-pseudonimisation.

• The authorities may also take this pseudonym to PubHubs Central and
request de-pseudonimisation. This is possible, with the help of the Tran-
scriptor, as sketched above. We recall that PubHubs will be set-up in such
a way that PHC and TS are run by different organisations, so that both
must cooperate with the request.

• Alternatively, the authorities may show up at PubHubs Central with an
e-mail address and/or phone number and ask: is this person registered
and active at PubHubs? If so, PHC can produce registration (meta)data,
including the user identity IDU . The authorities may then proceed to TS
and request that this identity be translated to hub specific pseudonyms,
so that the authorities can continue their investigation within those hubs.

We conclude that the PubHubs’ minimal identity infrastructure is powerful
enough to support both internal and external sanctioning, by PubHubs (includ-
ing its hubs) and by law enforcement authorities. It does offer a combination
of privacy-protection and accountability. Whether this combination is effective,
remains to be seen when PubHubs is deployed at a larger scale.

6 Status and outlook

PubHubs is still in its implementation phase and has not been released as pro-
duction code, for actual usage. This paper focuses on the underlying identity
infrastructure, which forms a stable basis. In this section we briefly sketch what
is currently there and in what form. Since this information will be outdated
fairly soon, it is meant to give a snapshot impression.

• The central login is there, including issuance of a Yivi credential with
PubHubs attributes at registration, and with disclosure of these attributes
for subsequent login. The possibility to change, once registered, the e-mail
address or mobile phone number is not supported yet.

• Generation and translation of hub-specific pseudonyms, and login at Synapse
homeservers of hubs via such pseudonyms, is implemented, however with-
out separation of the tasks of PubHubs Central and of the Transcriptor.

20

• Secure rooms with login via specifically requested attributes work, in rudi-
mentary form, still without properly explained user interfaces.

• The dedicated PubHubs client also exists in rudimentary form.

• PubHubs-specific support for moderation and banning does not exist yet.
In particular, the Global Ban List is not implemented yet.

7 Conclusions

PubHubs is a non-profit civil-society initiative to develop an open source com-
munity platform based on public values. Its focus is not on providing individuals
with tools for self-aggrandising, but on tools for individuals in their communi-
ties. Security and privacy are important values in the design of PubHubs, in
combination with accountability. This is supported by a rich identity infras-
tructure, with attribute-based authentication and local pseudonyms.

Unlike common social networks, communication in PubHubs is comparti-
mentalised by design, into local hubs with their own data and name spaces.
This is appealing to the PubHubs community, but what also emerges is a desire
for hubs to cooperate, for instance when a local museum wishes to organise
an event together with the local library. How to precisely support such coop-
eration with the PubHubs architecture is one of the challenges for the future.
But of course, organising and supporting an active user community is the main
challenge, for the near future.

References

[1] G. Alpár, F. van den Broek, B. Hampiholi, and B. Jacobs. Towards
practical attribute-based signatures. In R.S. CHakraborty, P. Schwabe,
and J. Solworth, editors, Proceedings of the Fifth Int. Conf. on Security,
Privacy, and Applied Cryptography Engineering (SPACE 2015), number
9354 in Lect. Notes Comp. Sci., pages 310–328. Springer, Berlin, 2015.
doi:10.1007/978-3-319-24126-5_18.

[2] G. Alpár, F. van den Broek, B. Hampiholi, B. Jacobs, W. Lueks, and
S. Ringers. IRMA: practical, decentralized and privacy-friendly identity
management using smartphones. In 10th Workshop on Hot Topics in Pri-
vacy Enhancing Technologies (HotPETs 2017), 2017.

[3] D. Bernstein. Curve25519: new Diffie-Hellman speed records. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography,
number 3958 in Lect. Notes Comp. Sci., pages 207–228. Springer, Berlin,
2006. doi:10.1007/11745853_14.

[4] J. Camenisch and E. van Herreweghen. Design and implementation of the
Idemix anonymous credential system. In CCS’02: Proceedings of the 9th

21

https://doi.org/10.1007/978-3-319-24126-5_18
https://doi.org/10.1007/11745853_14

ACM conference on Computer and communications security, pages 21–30.
ACM, 2002.

[5] M. Chase, T. Perrin, and G. Zacerucha. The signal private group system
and anonymous credentials supporting efficient verifiable encryption. Tech-
nical report, December 2019. https://signal.org/blog/pdfs/signal_

private_group_system.pdf.

[6] J. van Dijck, T. Poell, and M. de Waal. The Platform Society. Oxford
Univ. Press, 2018. doi:10.1093/oso/9780190889760.001.0001.

[7] T. Elgamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. on Information Theory, 31(4):469–472,
1985.

[8] B. van Gastel, B. Jacobs, and J. Popma. Data protection using polymorphic
pseudonymisation in a large-scale Parkinson’s disease study. Journal of
Parkinson’s Disease, 2021. doi:10.3233/JPD-202431.

[9] M. Hamburg. Decaf: Eliminating cofactors through point compression. In
R. Gennaro and M. Robshaw, editors, Advances in Cryptology – CRYPTO
2015, number 9215 in Lect. Notes Comp. Sci., pages 705–723. Springer,
Berlin, 2015.

[10] B. Jacobs and J. Popma. Medical research, big data and the need for
privacy by design. Big Data & Society, pages 1–5, 2019. doi:10.1177/

2053951718824352.

[11] E. Verheul and B. Jacobs. Polymorphic encryption and pseudonymisa-
tion in identity management and medical research. Nieuw Archief voor
Wiskunde, (5/18 nr. 3):168–172, 2017.

[12] A. Westerbaan and L. Hendriks. Polymorphic encryption and pseudonymi-
sation of IP network flows. In 2020 IFIP Networking Conference, pages
494–498. IEEE, 2020.

[13] E. Zuckerman. How social media could teach us to be better citizens. Journ.
of E-Learning and Knowledge Society, 18(3):36–41, 2022. doi:10.20368/

1971-8829/1135818.

22

https://signal.org/blog/pdfs/signal_private_group_system.pdf
https://signal.org/blog/pdfs/signal_private_group_system.pdf
https://doi.org/10.1093/oso/9780190889760.001.0001
https://doi.org/10.3233/JPD-202431
https://doi.org/10.1177/2053951718824352
https://doi.org/10.1177/2053951718824352
https://doi.org/10.20368/1971-8829/1135818
https://doi.org/10.20368/1971-8829/1135818

	Introduction
	An architecture overview of PubHub's
	Polymorphic pseudonyms in hubs
	Deriving private keys for hubs
	Polymorphic pseudonym, upon registration
	Hub login and pseudonymisation

	Attribute-based authentication
	Registration of new user
	Secure rooms within hubs

	Moderation and banning
	PubHubs and law enforcement

	Status and outlook
	Conclusions

